
CONVECTIVE WALL PLUME 

V. D. Z imin and Yu. N. Lyakhov 

We study laminar  convective flow along a ver t ica l  flat plate f rom a horizontal  line heat source lo-  
cated on the plate surface.  The problem is solved numer ica l ly  in the boundary- layerapproximat ion  for an 
incompress ib le  fluid and without account for heat t r ans fe r  at the fluid-plate boundary. The resul ts  of the 
numer ica l  solution are  compared  with experiment .  The study of the t empera tu re  field f rom the heated 
horizontal  wire  located on the surface  of a ver t ica l  plate made f rom foam plastic was conducted using the 
IAB-451 shadow instrument  by the diffraction in te r fe rometer  method. 

NOTATIONS 

x and y = vertical and horizontal coordinate s measured from the line heat source; x ~ = vertical coordinate 

measured from the center of the heated horizontal wire; u and v = vertical and horizontal velocities; T = 

temperature reckoned from the undisturbed fluid temperature, taken as zero; T w = wall temperature; B = 

complex defined by the physical properties of the fluid; v = kinematic viscosity; X = thermal diffusivity; 

fl = volumetric expansion coefficient; c_ = specific heat at constant pressure; p = density; g = gravitational 

acceleration; q = heat flux density throPugh horizontal section of plume (in cal/cm �9 see); ql = specific 

thermal power released by tile heated wire (in cal/cm - sec); t = dimensionless temperature profile func- 
tion; ~ = dimensionless variable. 

1. Let us examine in the boundary - l aye r  approximation the problem of f ree convection f rom a hor i -  
zontal line heat source  located on a ver t ica l  plate with zero the rmal  conductivity. The equations of the 
convective boundary layer  
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(1.2) 

admit, as in the case  of a source  in an infinite medium [1], the s imi la r i -  
ty t ransformat ions  

u =  '/'xv,],(~), ~ = T I .  P% J p -J 

The transformations (1.3) reduce (i.i) to a system of ordinary dif- 
ferential equations 
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1"' -]- s/5 1"1 - -  a~ 5 (1')~ + t = O, t' -[- ~/5 P t ]  = 0 ( 1 . 4 )  

Equations (1.4) were  solved numerical ly  for P = 7 with the boun- 
dary conditions 

! = / ' = 0  (~=0), / ' ~ t - - 0  (~=o~) (1.5) 

The solution was ca r r i ed  out by the method of finite difference 
with the in tegra l -norming condition 

~ ]' td~ = i ( 1 . 6 )  
0 

The tempera tu re  and ver t ica l  velocity distributions obtained as a 
resul t  of the numerica l  solution a re  shown in Fig. 1. 

2. The experimental  study of the tempera ture  field in the wall 
convective plume was ca r r i ed  out using a diffraction in te r fe rometer  on 
the setup and using the technique descr ibed in [2]. The heat source  was 
a dc-heated 0 .195-mm-diam platinum wire 20.0 cm long. The wire was 
positioned horizontally along the optical axis of the setup on the surface 
of a ver t ica l  plate with dimensions 20 x 30 • 5 cm, fabricated f rom 
f ine-pore  foam plastic with highly finished surface.  The experiments 
were  conducted with distilled water  at room tempera tu re  (Prandtl 
number  P = 7). Since the thermal  conductivity of the porous plastic is 
0.7-1 c a l / c m  �9 sec �9 ~ [3], the relat ive thermal  conductivity n 0 of the 
fluid relat ive to the wall was about 20, which corresponded sufficiently 
well to the condition adopted above on the absence of heat t r ans fe r  at 
the boundary.  

An in te r fe rogram of the observed  t empera tu re  field of the wall convective plume is shown in Fig. 2a. 
For  compar ison  Fig. 2b shows the in te r fe rogram for the case n0 = 0.6 (air-foam plastic).  In the latter 
case  there  is c lea r ly  marked downward curvature  of the i so therms near  the wall, which indicates the p re s -  
ence of considerable  heat flux f rom the fluid to the wall. 

The in te r fe rograms  of Fig. 2a were  analyzed using the technique adopted in [2]. The experimental  
resul ts  were  used to plot the dependence of the quantity 

[ qt" ]':' 

'~ - L ~ : ~  .I = [* (o)v%~, ( 2 . 1 )  
B = (g~v~p4c p4),/, 

on the ver t ica l  coordinate x ~ measured from the center of the healed wi re .  Here, in place of the quantity 
q used in (1.2) and (1.3) we used the thermal power ~ released per unit w i re  length. 

The resul ts  for severa l  the rmal  reg imes  a re  shown in Fig. 3a, where the points 1, 2, 3, 4 correspond 
to the values q/ = 14.4 �9 10 -3, 20.0 �9 10 -3, 28.5 �9 10 -8, 37.8 �9 10 -3 c a l / c m  �9 sec.  The straight  line drawn 
through the experimental  points by the method of least squares  is descr ibed by the equation 77 = - 0.112 + 
0.422 x ~ The mean- squa re  e r r o r  in the free t e rm amounts to 15%, and that in the slope is 0.2%. The slope 
of the s t ra ight  line was used to calculate the maximal  value of the dimensionless t empera tu re  profile func- 
tion t(0) = 1.67. Compar ison of the resul t  with the theoret ical  value t(0) = 2.16 yields the re la t ionq= 0.73 q/. 

In view of the fact that q also appears  in the express ion for the dimensionless  var iable  ~, we made a 
compar i son  of the theoret ical  and experimental  resul ts  on the basis  of the thickness of the thermal  boun- 
dary layer .  It follows f rom (1.3) that the quantity 

- -  (ky)'/, = (~)'/0x, 

I qe~ I'/o ( 2 . 2 )  
k=  L p%,~ J 

is proport ional  to the ver t ica l  x. For  a given value of the ver t ica l  coordinate x ~ we found that distance Yl/2 
f rom the plate at which the t empera tu re  was half that at the wall. The dependence of ~1/2 on x ~ is shown in 
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Fig. 3b. Here again, in place of q in (2.2) we used the value of ql" Using the method of least  squares ,  this 
dependence can be expressed  by the equation 

~I, = -- 0.83 + 1.04x ~ 

with a mean-square error in the free term of 15% and 2% in the slope. The slope of the straight line was 
used to calculate the value of ~!/2" Comparison of this result with the value ~1/2 = 0.95, obtained on the 
basis of numerical calculation (Fig. l),again leads to the relation q = 0.73 ql" 

Thus the experimental and numerical solution results coincide if we consider that only part of the 
power released by the heated wire goes into formation of the wall plume. The thermal power losses can 
be explained in part by heat transfer into the depth of the plate in the zone immediately adjacent to the 
source. In this zone, in spite of the relatively small thermal conductivity of the plate material, the heat 
losses may be significant because of the large temperature gradient. A second reason for the lack of 
complete agreement between the theoretical and experimental constants in the similarity transformations 
may be inflow of cold fluid to the source from regions located below its level, which is not taken into ac- 
count in the theoretical examination of the problem in the boundary-layer approximation. 

Figure 4 shows the dimensionless temperature profiles in the wall plume for two thermal regimes. 
The experimental points i, 2, 3, 4 correspond to sections at distances 4, 6, 8, i0 cm from the center of the 
heated wire for ql = 20.0 �9 10 -3 eal/cm �9 points 5, 6, 7 correspond to sections 8, i0, 12 cm and q/ = 
37.8 �9 10 -3 cal/cm �9 sec. The solid curve represents the temperature profile obtained on the basis of the 
numerical solution of the problem. We see from the figure that the theoretical and experimental tempera- 
ture profiles coincide to within experimental error. 

The authors wish to thank G. F. Shaidurov for valuable advice. 
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